报告题目:Optimal subsampling for large sample quantile regression with massive data
报 告 人:周勇 教授 华东师范大学经管学部,统计交叉科学研究院
报告时间:2022年4月22日 下午 16:00-17:30
报告地点:腾讯会议 ID:172-488-317
或点击链接直接加入会议:https://meeting.tencent.com/dm/e6mdzuUCUXll
校内联系人:赵世舜 zhaoss@jlu.edu.cn
报告摘要:To balance the explosive growth of data volume and the limited budget of computational resource, one of the popular methods is downscaling the data volume by subsampling a subdata set which inherits the property of the full data. As an alternative to the mean regression model, the quantile regression model has been studied extensively with medium scale of independent data. This paper focusses on quantile regression with massive data where the sample size $n$ is extraordinarily large but the dimensionality $d$ is small. We first formulate the general subsampling procedure and establish the asymptotic property of the resultant estimator. Based on the result and adopting the optimal criteria in experimental design, we derive two optimal subsampling probabilities which ensure the subsampled estimator achieves the minimal asymptotic MSE. Since the optimal subsampling probabilities depend on the full data estimate, we develop a two-step optimal subsampling algorithm and study the consistency and asymptotic normality of the resultant estimator. The empirical performance of the optimal subsampling algorithm is evaluated by synthetic and real data sets.
报告人简介:周勇教授,国家杰出青年基金获得者,教育部长江学者特聘教授,中国科学院百人计划入选者,国务院政府特殊津贴专家,“新世纪百千万人才工程”国家级人选。华东师范大学经管学部教授,统计交叉科学研究院院长。
国务院学位委员会第七届统计学科评议组成员,教育部应用统计专业硕士教学指导委员会委员,现任中国统计学会副会长,中国优选法统筹法与经济数学研究会副理事长,中国管理科学学会常务理事。同时担任国内外几个重要学术期刊的编委和副主编,包括国际期刊《Journal of Business and Economic Statistics》、《Canadian Journal of Statistics》、《Sankhya B》编委等。
周勇教授主要从事大数据分析与建模、金融计量、风险管理、计量经济学、统计理论和方法等科学研究工作,取得许多有重要学术价值和影响的研究成果。先后承担并完成国家自然科学基金项目,国家杰出青年基金,自然科学基金委重点项目等科学项目10余项,曾获得省部级奖励二项。在包括国际顶级《The Annals of Statistics》、《Journal of The American Statistical Association》,《Biometrika》,《Journal of Econometrics》和《Journal of Business & Economic Statistics》等学术杂志上发表学术论文近200篇。